Abstract

Terahertz (THz) spectroscopy technique has been researched and developed for rapid and non-destructive detection of food safety and quality due to its low-energy and non-ionizing characteristics. The objective of this study was to develop a flexible identification model to discriminate transgenic and non-transgenic rice seeds based on terahertz (THz) spectroscopy. To extract THz spectral features and reduce the feature dimension, sparse representation (SR) is employed in this work. A sufficient sparsity level is selected to train the sparse coding of the THz data, and the random forest (RF) method is then applied to obtain a discrimination model. The results show that there exist differences between transgenic and non-transgenic rice seeds in THz spectral band and, comparing with Least squares support vector machines (LS-SVM) method, SR-RF is a better model for discrimination (accuracy is 95% in prediction set, 100% in calibration set, respectively). The conclusion is that SR may be more useful in the application of THz spectroscopy to reduce dimension and the SR-RF provides a new, effective, and flexible method for detection and identification of transgenic and non-transgenic rice seeds with THz spectral system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.