Abstract

The oxygen saturation (SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) of human tissue can be measured and the SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> distribution diagram can be built by irradiating the tissue with two wavelengths of light-red (660 nm) and near-infrared [(NIR) 890 nm]. In this paper, two analysis methods are employed to calibrate the measurement accuracy of skin oxygen-saturation imaging (SOSI) system. In addition, to compute the skin tissue oxygen saturation, the partial pressure of oxygen (PaO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) and SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> of nine subjects are measured using transcutaneous oxygen pressure (TcPO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) measurement and SOSI system. The results show the measurement deviation reduced considerably when the center distance between the central region and calculated region is less than 10 mm. Furthermore, the PaO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> at the interdigital fold between the thumb and the index finger exhibits greater variation (43-61 mmHg), and the converted SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> from TcPO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ranges from 78% to 91%. By employing SOSI system, the SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> levels obtained at the dorsum of hand range from 85% to 93%, which is slightly higher (2%-7%) than those measured using TcPO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> system. This is because: 1) more vessels are located at the region that is measured using SOSI system than that measured using TcPO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and 2) more NIR light is absorbed by subcutaneous fat using SOSI system than theoretical simulations. In the future, the SOSI system could provide SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> information to clinicians for diagnosing the health status of patients' cardiovascular system from the variation of SpO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> distribution diagrams between the tissue and vascular regions, and even in different parts of the human body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.