Abstract
AbstractTrust models that rely on recommendation trusts are vulnerable to badmouthing and ballot‐stuffing attacks. To cope with these attacks, existing trust models use different trust aggregation techniques to process the recommendation trusts and combine them with the direct trust values to form a combined trust value. However, these trust models are biased as recommendation trusts that deviate too much from one's own opinion are discarded. In this paper, we propose a non‐biased trust model that considers every recommendation trusts available regardless they are good or bad. Our trust model is based on a combination of 2 techniques: the dissimilarity test and the Dempster‐Shafer Theory. The dissimilarity test determines the amount of conflict between 2 trust records, whereas the Dempster‐Shafer Theory assigns belief functions based on the results of the dissimilarity test. Numerical results show that our trust model is robust against reputation‐based attacks when compared to trust aggregation techniques such as the linear opinion pooling, subjective logic model, entropy‐based probability model, and regression analysis. In addition, our model has been extensively tested using network simulator NS‐3 in an Infrastructure‐based wireless mesh networks and a Hybrid‐based wireless mesh networks to demonstrate that it can mitigate blackhole and grayhole attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.