Abstract

Use of physically-motivated numerical models like groundwater flow-and-transport models for probabilistic impact assessments and optimization under uncertainty (OUU) typically incurs such a computational burdensome that these tools cannot be used during decision making. The computational challenges associated with these models can be addressed through emulation. In the land-use/water-quality context, the linear relation between nitrate loading and surface-water/groundwater nitrate concentrations presents an opportunity for employing an efficient model emulator through the application of impulse-response matrices. When paired with first-order second-moment techniques, the emulation strategy gives rise to the “stochastic impulse-response emulator” (SIRE). SIRE is shown to facilitate non-intrusive, near-real time, and risk-based evaluation of nitrate-loading change scenarios, as well as nitrate-loading OUU subject to surface-water/groundwater concentration constraints in high decision variable and parameter dimensions. Two case studies are used to demonstrate SIRE in the nitrate-loading context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.