Abstract
In this investigation, a non-incremental solution procedure for the finite rotationand large deformation analysis of plates is presented. The method, whichis based on the absolute nodal coordinate formulation, leads to plateelements capable of representing exact rigid body motion. In thismethod, continuity conditions on all the displacement gradients areimposed. Therefore, non-smoothness of the plate mid-surface at the nodalpoints is avoided. Unlike other existing finite element formulationsthat lead to a highly nonlinear inertial forces for three-dimensionalelements, the proposed formulation leads to a constant mass matrix, andas a result, the centrifugal and Coriolis inertia forces are identicallyequal to zero. Furthermore, the method relaxes some of the assumptionsused in the classical and Mindlin plate models and automatically satisfiesthe objectivity requirements. By using a generalcontinuum mechanics approach, a relatively simple expression for theelastic forces is obtained. Generalization of the formulation to thecase of shell elements is discussed. As examples of the implementationof the proposed method, two different plate elements are presented; oneplate element does not guarantee the continuity of the displacementgradients between the nodal points, while the other plate elementguarantees this continuity. Numerical results are presented in order todemonstrate the use of the proposed method in the large rotation anddeformation analysis of plates and shells. The numerical results, whichare compared with the results obtained using existing incrementalprocedures, show that the solution obtained using the proposed methodsatisfies the principle of work and energy. These results are obtainedusing explicit numerical integration method. Potential applications ofthe proposed method include high-speed metal forming, vehiclecrashworthiness, rotor blades, and tires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.