Abstract

This work presents the preparation of an efficient and sensitive glucose sensor for the detection of glucose in an alkaline media. The glucose sensor is composed of a metal organic framework (MOF) composite comprising Ag@TiO2 nanoparticles. The hybrid of Ag@TiO2 encapsulated in ZIF-67 was synthesized by the solvothermal method and applied onto a glassy carbon electrode (GCE) for the non-enzymatic sensing of glucose. The porosity of ZIF-67 was favorable for the unhindered diffusion and entrapment of glucose and its cavities served as reaction vessels. The electrochemical behavior of Ag@TiO2@ZIF-67 showed amplified results when compared with that of Ag@TiO2 and ZIF-67. Cyclic tests toward the oxidation of glucose has demonstrated excellent stability of a MOF-based hybrid sensor. The sensor based on Ag@TiO2@ZIF-67 showed high sensitivity of 0.788 μAμM−1cm−2 with a linear concentration range of 48 μM−1 mM and a response time of 5 s with an excellent detection limit of 0.99 μM (S/N = 3).

Highlights

  • Diabetes mellitus is a very common and fatal disease

  • In the case of Ag@TiO2@ZIF-67 (Figure 1A), all the diffraction peaks for ZIF-67 could be seen after the successful addition of Ag@TiO2, demonstrating retention of ZIF-67 crystal structure in the nanocomposite

  • It can be assumed that the addition of Ag NPs in the metal organic framework (MOF) has no effect on its crystal structure

Read more

Summary

A Non-enzymatic Electrochemical

Sensor for Glucose Detection Based on Ag@TiO2@ Metal-Organic Framework (ZIF-67) Nanocomposite. This work presents the preparation of an efficient and sensitive glucose sensor for the detection of glucose in an alkaline media. The glucose sensor is composed of a metal organic framework (MOF) composite comprising Ag@TiO2 nanoparticles. The hybrid of Ag@TiO2 encapsulated in ZIF-67 was synthesized by the solvothermal method and applied onto a glassy carbon electrode (GCE) for the non-enzymatic sensing of glucose. Cyclic tests toward the oxidation of glucose has demonstrated excellent stability of a MOF-based hybrid sensor. The sensor based on Ag@TiO2@ZIF-67 showed high sensitivity of 0.788 μAμM−1cm−2 with a linear concentration range of 48 μM−1 mM and a response time of 5 s with an excellent detection limit of 0.99 μM (S/N = 3)

INTRODUCTION
RESULTS AND DISCUSSION
CONCLUSION
DATA AVAILABILITY STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.