Abstract
In recent years, the integration of robots in minimally invasive surgery has gained significant traction in clinical practice. However, conventional contact-based human-computer interaction poses the risk of bacterial infection, significantly limiting the role of robots in surgery. To address this limitation, we propose an innovative interaction method rooted in gestures and visual tags, allowing surgeons to control and fine-tune surgical robots without physical contact with the environment. By encoding the six gestures collected using LeapMotion, we can effectively control the surgical robot in a non-contact manner. Moreover, utilizing Aruco technology, we have accurately identified the 3D spatial position of the visual label, and developed 12 fine-tuning operations to refine surgical instruments. To evaluate the applicability of our proposed system in surgery, we designed a relevant experimental setup. In the experiment, we achieved enough precision. These results demonstrate that our system meets the clinical standard, providing doctors with a non-contact and flexible means of interacting with robots during surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.