Abstract

GATA6 is a critical regulator of pancreatic development, with heterozygous mutations in this transcription factor being the most common cause of pancreatic agenesis. To study the variability in disease phenotype among individuals harboring these mutations, a patient-induced pluripotent stem cell model was used. Interestingly, GATA6 protein expression remained depressed in pancreatic progenitor cells even after correction of the coding mutation. Screening the regulatory regions of the GATA6 gene in these patient cells and 32 additional agenesis patients revealed a higher minor allele frequency of a SNP 3' of the GATA6 coding sequence. Introduction of this minor allele SNP by genome editing confirmed its functionality in depressing GATA6 expression and the efficiency of pancreas differentiation. This work highlights a possible genetic modifier contributing to pancreatic agenesis and demonstrates the usefulness of using patient-induced pluripotent stem cells for targeted discovery and validation of non-coding gene variants affecting gene expression and disease penetrance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.