Abstract
A non-orthogonal multiple access (NOMA)-enabled double-layer airborne access vehicular ad hoc networks (DLAA-VANETs) architecture is designed in this paper, which consists of a high-altitude platform (HAP), multiple unmanned aerial vehicles (UAVs) and vehicles. For the designed DLAA-VANETs, we investigate the UAV deployment and network optimization problems. In particular, a UAV deployment scheme based on particle swarm optimization is presented. Then, the NOMA technique is introduced into the designed architecture, which can improve the transmission rate. Afterward, we take the information security into account and formulate a downlink total transmission rate maximization problem by optimizing UAV height and subcarrier allocation. For tackling this non-convex problem, we decouple this downlink total transmission rate maximization problem as two subproblems, where UAV height and subcarrier allocation problems are solved in turn. Moreover, the transmission performance of the designed DLAA-VANETs is analyzed, based on which the security outage probability (SOP) is derived. Finally, simulation results demonstrate that the presented UAV deployment scheme can maximize the relay coverage ratio. In addition, the proposed can achieve a higher downlink total transmission rate in comparison with the current works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.