Abstract
Principal Component Analysis (PCA) is the most common nonparametric method for estimating the volatility structure of Gaussian interest rate models. One major difficulty in the estimation of these models is the fact that forward rate curves are not directly observable from the market so that non-trivial observational errors arise in any statistical analysis. In this work, we point out that the classical PCA analysis is not suitable for estimating factors of forward rate curves due to the presence of measurement errors induced by market microstructure effects and numerical interpolation. Our analysis indicates that the PCA based on the long-run covariance matrix is capable to extract the true covariance structure of the forward rate curves in the presence of observational errors. Moreover, it provides a significant reduction in the pricing errors due to noisy data typically found in forward rate curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.