Abstract

This paper proposes a new winding layout for high-power medium-voltage nine-phase induction machines (IMs) based on a single-layer concentrated winding layout having a unity winding factor. The machine is fundamentally an asymmetrical nine-phase IM, where phases are connected in such a way as to provide six terminals that are fed from two three-phase inverters. Compared to a conventional asymmetrical six-phase IM with the same stator and copper volumes, it provides improved torque density, a higher torque/current ratio, and a simpler winding layout. Finite-element simulation is used to compare the proposed winding layout with a conventional split-phase six-phase IM to assess the claimed merits. A 1.5-hp prototype IM is also used for experimental verification. The experimental results are given under both healthy and fault conditions, where the faulty converter is completely disabled. The achievable derating factors under this case are then given and compared with those of conventional six-phase IMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.