Abstract

BackgroundMost turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles.ResultsExceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes.ConclusionsThe homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.

Highlights

  • Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira

  • Among taxa traditionally referred to Xinjiangchelyidae, the morphology of X. wusu is most similar to that of X. (Annemys) levensis, Xinjiangchelys (Annemys) latiens and X. radiplicatoides, a number of differences justify its recognition as a separate taxon

  • In contrast to X. levensis, the prefrontals do not meet in the midline in X. wusu, the basioccipital tubera are better developed, there are two foramina nervi hypoglossi instead of three, the vertebral 3-4 sulcus extends onto neural 5 not neural 6, and the midline plastral sulcus is straight instead of sinusoidal

Read more

Summary

Introduction

Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Morphology-based, phylogenetic studies of fossil and extant turtles agree that the Middle to Late Jurassic was a important phase in the early diversification of crown group Testudines [1,2,3,4,5,6]. We here provide compelling morphological evidence for the homology of the basisphenoid processes of xinjiangchelyids with the basipterygoid processes of basal turtles and basal amniotes and review the evolution of this structure in Mesozoic turtles. We obtained the unorthodox placement of this clade outside crown group Testudines, which may hint at a surprisingly extensive evolutionary history of the turtle stem lineage

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.