Abstract

A new kind of recurrent neural network is presented for solving the Lyapunov equation with time-varying coefficient matrices. Different from other neural-computation approaches, the neural network is developed by following Zhang et al.'s design method, which is capable of solving the time-varying Lyapunov equation. The resultant Zhang neural network (ZNN) with implicit dynamics could globally exponentially converge to the exact time-varying solution of such a Lyapunov equation. Computer-simulation results substantiate that the proposed recurrent neural network could achieve much superior performance on solving the Lyapunov equation with time-varying coefficient matrices, as compared to conventional gradient-based neural networks (GNN).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.