Abstract

A prototype for multi-mode linear ultrasonic motor has been proposed and designed. It is designed using a combination of the first longitudinal and the first bending mode. The piezoelectric ceramics convert energy using the longitudinal d33 effect which allows an improved reliability, large vibration amplitudes and excellent piezoelectric coupling. The normal direction motion of the driving element is excited by the first longitudinal mode. The tangential direction motion of the driving element is excited by the first bending mode. The resulting displacement of the driving element is transmitted by the frictional force between the vibrator and the rail in a linear motion. The analysis on the modals of the composite vibrator by using the ANSYS finite element software has been presented in this paper. Finally, the vibrator structure of the motor and the motor's own structures are designed. The basic design is discussed and simulations are compared with the experimental results, the results show that the motor characteristics can be optimized for a particular task by choosing the appropriate operating parameters such as exciting voltage, exciting frequency and normal force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.