Abstract

In this article, we proposed a new two-level implicit method of accuracy two in time and four in space based on spline in compression approximations using two half-step points and a central point on a uniform mesh for the numerical solution of the system of 1D quasi-linear parabolic partial differential equations subject to appropriate initial and natural boundary conditions prescribed. The proposed method is derived directly from the continuity condition of the first order derivative of the non-polynomial compression spline function. The stability analysis for a model problem is discussed. The method is directly applicable to problems in polar systems. To demonstrate the strength and utility of the proposed method, we have solved generalized Burgers–Huxley equation, generalized Burgers–Fisher equation, coupled Burgers-equations and parabolic equations with singular coefficients. We show that the proposed method enables us to obtain high accurate solution for high Reynolds number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.