Abstract

a new two-input and multi-output interleaved DC_DC boost converter is proposed. This converter is a high gain and non-isolated boost converter, which can be used in satellites power system. This converter has several dc links with different gains in the output to feed other satellite subsystems. This converter is an interleaved boost converter, so it performs better than the conventional converters. The main tasks of this converter in the subsystem of satellite energy supply are maximum power points tracking (MPPT), battery charging and line dc voltage regulation. Normally, three separate converters are required to provide these tasks. By increasing the power electronic devices, the volume and weight of the satellite will go up. This is not desirable, therefore, must use a comprehensive circuit to perform the three above tasks at the same time. The proposed converter has an integrated structure with only four switches that controlled by different duty cycles. Also this converter has a uni-directional input for connecting the solar array and a bi-directional input for connecting the battery. Based on charging or discharging state of the battery, three operation modes are defined for this converter. One of the prominent features of the proposed converter is the battery bases grounded, so the noise cannot damage the battery and so on increase the useful life of battery. Theoretical analysis of the proposed converter is verified by simulation results for different operation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.