Abstract

To calculate complex turbulent flows with separation and heat transfer, we have developed a new turbulence model for flow field, which is modified from the latest low-Reynolds-number k−g3 model. The main improvement is achieved by the introduction of the Kolmogorov velocity scale, uc &Z.tbnd; (vε)14, instead of the friction velocity uτ, to account for the near-wall and low-Reynolds-number effects in both attached and detached flows. The present model predicts quite successfully the separating and reattaching flows downstream of a backward-facing step, which involve most of the essential physics of complex turbulent flows, under various flow conditions. We have also discussed in detail the structure of the separating and reattaching flow based on the computational results, and presented several important features closely related to the mechanism of turbulent heat transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.