Abstract

ABSTRACTIn this paper, a new technique for order reduction of linear time-invariant systems is presented. This technique is intended for both single-input single-output (SISO) and multi-input multi-output (MIMO) systems. Motivated by other reduction techniques, the new proposed reduction technique is based on modified pole clustering and factor division algorithm with the objective of obtaining a stable reduced-order system preserving all essential properties of the original system. The new technique is illustrated by three numerical examples which are considered from the literature. To evaluate the superiority and robustness of the new technique, the results of the proposed technique are compared with other well-known and recently developed order-reduction techniques like Routh approximation and Big Bang-Big Crunch algorithm. The comparison of performance indices shows the efficiency and powerfulness of the new technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.