Abstract

The exploration of fractured-vuggy carbonate reservoirs usually involves hydraulic fracturing to maximize recovery. At present, effectively communicating natural discontinuities is a technical challenge. In this article, we investigated the origin and propagation of cracks in fractured-vuggy reservoirs using discrete element hydraulic fracturing simulations that included poromechanical effects. A particular focus on the microscopic force-displacement symmetry of adjacent pore pressures is introduced. Our results demonstrate that the poromechanical effect significantly increases the strength of overpressurized reservoir formations. Moreover, the effect of injected fluid viscosity on the hydraulic fracturing effectiveness was studied through two simulation tests. The outcomes highlight the critical influence of fluid viscosity on the propagation of micro-cracks in overpressure fractured-vuggy reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.