Abstract

This paper considers the quadratic Gaussian multiterminal (MT) source coding problem and provides a new sufficient condition for the Berger-Tung (BT) sum-rate bound to be tight. The converse proof utilizes a set of virtual remote sources given which the observed sources are block independent with a maximum block size of 2. The given MT source coding problem is then related to a set of two-terminal problems with matrix-distortion constraints, for which a new lower bound on the sum-rate is given. By formulating a convex optimization problem over all distortion matrices, a sufficient condition is derived for the optimal BT scheme to satisfy the subgradient-based Karush-Kuhn-Tucker condition. The subset of the quadratic Gaussian MT problem satisfying our new sufficient condition subsumes all previously known tight cases, and our proof technique opens a new direction for more general partial solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.