Abstract
Abstract The blocking voltage level of silicon carbide (SiC) can reach 10–25 kV, which will significantly increase the power density and capacity of power modules. However, high voltage can induce a high electric field, increase the risk of partial discharge (PD), and threaten the insulation reliability. This paper focuses on the triple points between the metal electrode, silicone gel, and ceramic in power modules. The influencing factors of the electric field at different triple points are fully analyzed. PD experiments are performed and the results show that the interface between silicone gel and ceramic is a weak area of insulation. Therefore, this paper demonstrates that area of weak insulation and high electric field meet at the triple point. To solve this problem, a new structure of the ceramic substrate is proposed, which isolates the interface area from the high electric field. At the same time, the new structure can significantly reduce the high electric field reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.