Abstract

This paper is concerned with the parameter estimation in linear regression model with additional stochastic linear restrictions. To overcome the multicollinearity problem, a new stochastic mixed ridge estimator is proposed and its efficiency is discussed. Necessary and sufficient conditions for the superiority of the stochastic mixed ridge estimator over the ridge estimator and the mixed estimator in the mean squared error matrix sense are derived for the two cases in which the parametric restrictions are correct and are not correct. Finally, a numerical example is also given to show the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.