Abstract

Summary Due to ongoing miniaturization in electronics, connector contact designs have to follow the same trends. The prediction of the mechanical and electrical performance of low force connector contacts becomes increasingly important. This paper shows a new approach to model the elastic plastic contact of two multi-layered nonconforming rough bodies subjected to pressure and shear traction. Three main considerations will be presented. 1. To investigate the influence of the surface topography on contact performance, measured three dimensional digitized surfaces are not always available. Hence a numerical description of a ‘real’ rough surface is of great importance. It can be shown that an engineering surface can be modeled by five scale independent parameters: RMS roughness, x/y correlation length, kurtosis and skew. 2. Based on Papkovich Neuber Potentials and both multi grid and conjugate gradient methods, a numerical algorithm has been developed to calculate the stresses and deformations in a contact system with up to three different layers per contact partner. The plastic deformation of the individual contact points (a-spots) can be interpolated using different material hardening behaviors. 3. If the a-spot distribution is known, the constriction resistance of the true contact area can be calculated. The voltage drop inside the contacting bodies is interpolated by solving the Laplace equation iteratively. The different electrical properties of the contact layers as well as the interaction of the individual a-spots, is also taken into account. The simulation algorithms are validated using a Au/Ni/CuSn6 contact system. The results show excellent agreement between measured and simulated contact resistance results over a normal force range from 1 gram up to 250 grams. The algorithms are implemented with an ‘easy to use’ windows interface “First Contact”. The software also incorporates a material database that when used together with a surface modeler, allows for the fast calculation and 3d visualization of all mechanical and electrical contact characteristics..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.