Abstract
In this work, an efficient solution based on the reducing forms approach is presented to extract the five parameters of the single-diode model of PV generators from their I-V curves. Thus, by reducing the number of the five unknown parameters to two unknowns, the analytical expression of the current based on the LambertW function will then depend only on the ideality factor and the series resistance, as the two unknowns to predict numerically using the non-linear least square technique. The three other parameters are calculated as functions of the two predicted parameters using a linear system of three equations. Two sets of experiments are used for the validation of the proposed approach, which first showed its rapidity and high accuracy compared to the best approaches from the literature. Then, the method was applied for the real-time identification of four PV modules operating outdoors during one reference day at Cocoa (Florida).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Energy Optimization and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.