Abstract

An innovative system for isolating nanocellulose was established that uses Ni(NO3)2 transition metal salt without the assistance of mechanical disintegrations or mineral acid and was compared with the classic production by tedious acid hydrolysis. Optimization study on Ni(II)-catalyzed hydrolysis of cellulose isolated from oil palm (Elaeis guineensis) empty fruit bunch (OPEFB) towards nanocellulose yield was investigated. Response surface methodology-central composite design was used to design and optimize the experiments with three operating parameters: pH of Ni(NO3)2 (pH 2–4), reaction time (20‒100 min) and reaction temperature (25‒65 °C). The present study indicated that the nanocellulose yield as high as 81.37% was achieved under hydrolysis conditions of pH 3, 58 °C within 58 min. At the optimum conditions, the OPEFB derived nanocellulose rendered high crystallinity of 91.1% and excellent thermal stability of 341 °C. Evidence of the successful isolation of nanocellulose was proven by HRTEM observation revealing fibrils formed the long and interconnected network-like structure with the average width of 41.1 ± 1.6 nm and several micrometers in length, which resulted in high aspect ratio. Thus, the obtained nanocellulose via Ni(II)-catalyzed hydrolysis has numerous potential applications and represent a green alternative for the treatment of OPEFB. This study provided a facile high yield procedure for the production of nanocellulose with similar characteristics to traditional nanocellulose, which was significant to the commercialization of nanocellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.