Abstract
In the existing probabilistic hierarchical optimization approaches, such as probabilistic analytical target cascading (PATC), all the stochastic interrelated responses are characterized only by the first two statistical moments. However, due to the high nonlinear relation between the inputs and outputs, the interrelated responses are not necessarily normally distributed. The existing approaches, therefore, may not accurately quantify the probabilistic characteristics of the interrelated responses, and would further prevent achieving the real optimal solution. To overcome this deficiency, a novel PATC approach, named PATC-PCE is developed. By employing the polynomial chaos expansion (PCE) technique, the entire distribution of interrelated response can be characterized by a PCE coefficients vector, and then matched and propagated in the hierarchy. Comparative studies show that PATC-PCE outperforms PATC in terms of yielding more accurate optimal solutions and fewer design cycles when the interrelated response are random non-normal quantities, while at a sacrifice of extra function evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.