Abstract

A new numerical method is devised and analyzed for a type of ill-posed elliptic Cauchy problems by using the primal–dual weak Galerkin finite element method. This new primal–dual weak Galerkin algorithm is robust and efficient in the sense that the system arising from the scheme is symmetric, well-posed, and is satisfied by the exact solution (if it exists). An error estimate of optimal order is established for the corresponding numerical solutions in a scaled residual norm. In addition, a mathematical convergence is established in a weak L2 topology for the new numerical method. Numerical results are reported to demonstrate the efficiency of the primal–dual weak Galerkin method as well as the accuracy of the numerical approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.