Abstract

AbstractIn this paper, differential evolution algorithm (DEA), one of the most promising Evolutionary Algorithm’s, was employed to tune a PID controller and to design a set-point filter for unstable and integrating processes with time delay. The proposed cost function used in DEA gives the shortest trajectory with minimum time in the phase plane. The results obtained from the proposed tuning method here were also compared with the results of the method used in [1]. A time-domain cost function is deployed in order to obtain good compromise between the input step response and disturbance rejection design. The PID controllers optimized with DE algorithm and the proposed cost function gives a performance that is at least as good as that of the PID tuning method from [1]. With PID tuning method using DEA, a faster settling time, less or no overshoot and higher robustness were obtained. Furthermore, the tuning method used here is successful in the presence of high noise.KeywordsDifferential EvolutionStep ResponseDifferential Evolution AlgorithmTuning MethodController SignalThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.