Abstract

The genetic programming approach for predicting temper embrittlement of rotor steel (30Cr2MoV) is proposed. Two independent data sets are obtained experimentally: training data and verifying data. Peak current density of reactivation, temperature of electrolyte, the general chemical composition parameter (J-factor), chemical composition of Cr and S, hardness and the grain size parameter of the material are used as independent variables, while fracture appearance transition temperature as dependent variable. On the basis of training data, the best model was obtained by genetic programming, and the accuracy of it was verified with the verifying data. The prediction error of the model is within the scatter of /spl plusmn/20 /spl deg/C. The results suggest that, the prediction model obtained by genetic programming is feasible and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.