Abstract

The Saccharomyces cerevisiae SKI (superkiller) genes are repressors of replication of M, L-A, and L-BC double-stranded (ds) RNAs; ski strains have an increased M dsRNA copy number and, as a result, are cold-sensitive for growth at 8 degrees. Growth is normal, however, at higher temperatures. We have found a new cytoplasmic genetic element [D] (for disease) that makes M1 dsRNA-containing superkiller strains grow slowly at 30 degrees, not at all at 37 degrees, and only very poorly at 20 degrees. These growth defects require three factors: a chromosomal ski mutation, the presence of M1 dsRNA, and the presence of the new cytoplasmic factor, [D]. We have isolated mutants unable to maintain [D] (mad), at least one of which is due to mutation of a single chromosomal locus. Further, [D] can be cured by growth at 37-39 degrees. We present evidence that [D] is not M, L-A, L-BC or W dsRNAs or mitochondrial DNA, 2 mu DNA, or [psi], but [D] depends on L-A for its maintenance. We also show that [D] is distinct from [B], a cytoplasmic element that allows M1 dsRNA to be stably replicated and maintained in spite of defects in certain chromosomal MAK genes that would otherwise be necessary. [D] activity is blocked by the presence of another extrachromosomal element, called [DIN] (for [D] interference). [D] and [DIN] may be different natural variants of the same molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.