Abstract

Motivated by the concepts of low carbon and environmental protection, electric vehicles have received much attention and become more and more popular all around the world. The expanding demand for electric vehicles has driven the rapid development of the charging pile industry. One of the prominent issues in charging pile industry is to determine their sites, which is a complex decision-making problem. As a matter of factor, the process of charging piles sites selection can be regarded as multi-attribute group decision-making (MAGDM), which is the main topic of this paper. The recently proposed linguistic spherical fuzzy sets (LSFSs) composed of the linguistic membership degree, linguistic abstinence degree and linguistic non-membership degree are powerful tools to express the evaluation information of decision makers (DMs). Based on the concept of LSFSs, we introduce probabilistic multi-valued linguistic spherical fuzzy sets (PMVLSFSs), which can describe DMs’ fuzzy evaluation information in a more refined and accurate way. The operation rules of PMVLSFSs are also developed in this article. To effectively aggregate PMVLSFSs, the probabilistic multi-valued linguistic spherical fuzzy power generalized Maclaurin symmetric mean operator and the probabilistic multi-valued linguistic spherical fuzzy power weighted generalized Maclaurin symmetric mean are put forward. Based on the above aggregation operators, a new method for MAGDM problem with PMVLSFSs is established. Further, a practical case of suitable site selection of charging pile is used to verify the practicability of this method. Lastly, comparative analysis with other methods is performed to illustrate the advantages and stability of proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.