Abstract

The disassembly line is the best choice for automated disassembly of disposal products. Therefore, disassembly line should be designed and balanced so that it can work as efficiently as possible. In this paper, a mathematical model for the multi-objective disassembly line balancing problem is formalized firstly. Then, a novel multi-objective ant colony optimization (MOACO) algorithm is proposed for solving this multi-objective optimization problem. Taking into account the problem constraints, a solution construction mechanism based on the method of tasks assignment is utilized in the algorithm. Additionally, niche technology is used to embed in the updating operation to search the Pareto optimal solutions. Moreover, in order to find the Pareto optimal set, the MOACO algorithm uses the concept of Pareto dominance to dynamically filter the obtained non-dominated solution set. To validate the performance of algorithm, the proposed algorithm is measured over published results obtained from single-objective optimization approaches and compared with multi-objective ACO algorithm based on uniform design. The experimental results show that the proposed MOACO is well suited to multi-objective optimization in disassembly line balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.