Abstract

In order to investigate the shape effect of nanoadditives on thermal conductivity of nanofluids, different length carbon nanotubes (CNTs) are made and using a two-step method, different nanofluids are prepared. The CNTs are cut into different lengths by functionalization at different refluxing times of 1, 2 and 4 hours. To probe the effect of aspect ratio of CNTs on the obtained experimental data, modified Hamilton-Crosser and Nan models are developed. It is found that the original Hamilton-Crosser and Nan models could not predict the experimental thermal conductivities. By replacing n = 6 + xL/D instead of the shape factor of n=6 in the Hamilton- Crosser, where L and D were length and diameter of CNTs and also by replacing φ (xL/D) instead of φ (volume fraction) in the Nan model, the prediction of modified equations show very good accordance with the experimental data which means the shape of nanoadditives has high impact on nanofluids’ properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.