Abstract

Layered Mn-based cathode (KxMnO2) has attracted wide attention for potassium ion batteries (PIBs) because of its high specific capacity and energy density. However, the structure and capacity of KxMnO2 cathode are constantly degraded during the cycling due to the strong Jahn-Teller effect of Mn3+ and huge ionic radius of K+. In this work, lithium ion and interlayer water were introduced into Mn layer and K layer in order to suppress the Jahn-Teller effect and expand interlayer spacing, respectively, thus obtaining new types of K0.4Mn1-xLixO2·0.33H2O cathode materials. The interlayer spacing of the K0.4MnO2 increased from 6.34 to 6.93 Å after the interlayer water insertion. X-ray photoelectron spectroscopy studies demonstrated that proper lithium doping can effectively control the ratio of Mn3+/Mn4+ and inhibit the Jahn-Teller effect. In-situ X-ray diffraction exhibited that lithium doping can inhibit the irreversible phase transition and improve the structural stability of materials during cycling. As a result, the optimal K0.4Mn0.9Li0.1O2·0.33H2O not only delivered a higher capacity retention of 84.04 % compared to the value of 28.09 % for K0.4MnO2·0.33H2O, but also maintained a greatly enhanced rate capability. This study provides a new opportunity for designing layered manganese-based cathode materials with high performance for PIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.