Abstract
There has been a considerable development in microfluidic based immunodiagnostics over the past few years which has greatly favored the growth of novel point-of-care-testing (POCT). However, the realization of an inexpensive, low-power POCT needs cheap and disposable microfluidic devices that can perform autonomously with minimum user intervention. This work, for the first time, reports the development of a new microchannel capillary flow assay (MCFA) platform that can perform chemiluminescence based ELISA with lyophilized chemiluminescent reagents. This new MCFA platform exploits the ultra-high sensitivity of chemiluminescent detection while eliminating the shortcomings associated with liquid reagent handling, control of assay sequence and user intervention. The functionally designed microchannels along with adequate hydrophilicity produce a sequential flow of assay reagents and autonomously performs the ultra-high sensitive chemiluminescence based ELISA for the detection of malaria biomarker such as PfHRP2. The MCFA platform with no external flow control and simple chemiluminescence detection can easily communicate with smartphone via USB-OTG port using a custom-designed optical detector. The use of the smartphone for display, data transfer, storage and analysis, as well as the source of power allows the development of a smartphone based POCT analyzer for disease diagnostics. This paper reports a limit of detection (LOD) of 8 ng/mL by the smartphone analyzer which is sensitive enough to detect active malarial infection. The MCFA platform developed with the smartphone analyzer can be easily customized for different biomarkers, so a hand-held POCT for various infectious diseases can be envisaged with full networking capability at low cost.
Highlights
One of the biggest challenges in the fast growing healthcare industry is a dearth of simplified point-of-care testing (POCT) systems that can quantitatively detect low concentrations of a target biomarker in biological fluids for disease diagnosis in resource limited settings[1,2]
Microfluidic platforms for immunodiagnostics or molecular diagnostics have been a field of constant growth in the recent years
The realization of an ideal POCT system largely relies on the development of cheap and disposable microfluidic devices that can be integrated to low power electronics with a user- friendly interface
Summary
One of the biggest challenges in the fast growing healthcare industry is a dearth of simplified point-of-care testing (POCT) systems that can quantitatively detect low concentrations of a target biomarker in biological fluids for disease diagnosis in resource limited settings[1,2]. A huge percentage of deaths related to major infectious diseases occur in resource-poor countries that have limited access to clinical laboratory facilities and trained personnel[3]. Developing reliable diagnostic tests that can be used at the point-of-care can result in earlier disease diagnosis, improved patient treatment, and more efficient outbreak prevention. The emergence of miniaturization and microfluidics has led to the development of cheap and novel lab-on-a-chip (LOC) platforms for rapid and sensitive immunodiagnostics. Microfluidic assays have been reported to have several advantages over conventional immunodiagnostics methods. Smaller device size, reduced sample volume, portability, faster detection and higher
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.