Abstract

Sustainable product design has been considered as one of the most important practices for achieving sustainability. To improve the environmental performances of a product through product design, however, a firm often needs to deal with some difficult technical trade-offs between traditional and environmental attributes which require new design concepts and engineering specifications. In this paper, we propose a novel use of the two-stage network Data Envelopment Analysis (DEA) to evaluate sustainable product design performances. We conceptualize “design efficiency” as a key measurement of design performance in terms of how well multiple product specifications and attributes are combined in a product design that leads to lower environmental impacts or better environmental performances. A two-stage network DEA model is developed for sustainable design performance evaluation with an “industrial design module” and a “bio design module.” To demonstrate the applications of our DEA-based methodology, we use data of key engineering specifications, product attributes, and emissions performances in the vehicle emissions testing database published by the US EPA to evaluate the sustainable design performances of different automobile manufacturers. Our test results show that sustainable design does not need to mean compromise between traditional and environmental attributes. Through addressing the interrelatedness of subsystems in product design, a firm can find the most efficient way to combine product specifications and attributes which leads to lower environmental impacts or better environmental performances. This paper contributes to the existing literature by developing a new research framework for evaluating sustainable design performances as well as by proposing an innovative application of the two-stage network DEA for finding the most eco-efficient way to achieve better environmental performances through product design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.