Abstract

Non-thermoelastic effects such as cure shrinkage of a polymer can play a role in residual stresses in composite parts. Studies have shown that cure shrinkage can place significant stresses on fibers. Therefore, the cure cycle of 3501-6 epoxy resins was modified to change its cure shrinkage characteristics to minimize the stresses. New cure strategies were developed using volumetric dilatometry, differential scanning calorimetry, dielectric cure monitoring, and a unique single fiber stress test method. Cure cycles were modified to balance the resin's thermal expansion with its cure shrinkage. In some cases, a region of constant volume was achieved for a short time. However, the cure shrinkage eventually dominated over thermal expansion in all cycles as the polymer gelled. Changing the cure cycle affected the degree of cure at the point where the fiber/matrix interface developed as well as the amount of cure shrinkage occurring afterwards. A higher degree of cure at this point leads to longer stress relaxation time. Furthermore, less cure shrinkage at this point leads to less stress on the fibers. Also, slow heating rates allow more time for the polymer to relax and relieve stresses caused by cure shrinkage. Finally, a cure cycle that minimizes stresses due to cure shrinkage has been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.