Abstract

The strong interaction between metal ions in solution and highly charged RNA molecules is critical for RNA structure formation and stabilization. Metal ions binding to RNA can induce RNA structural changes that are important for RNA cellular functions. Therefore, quantitative modeling of the ion effects is essential for RNA structure prediction and RNA-based molecular design. Recently, inspired by the increasing experimental evidence that supports the importance of ion correlation and fluctuation in ion-RNA interactions, we developed a new computational model, Monte Carlo Tightly Bound Ion (MCTBI) model. The validity of the model is shown by the improved accuracy in the predictions for ion binding properties and ion-dependent free energies for RNA structures. In this chapter, using homodimeric tetraloop-receptor docking as an illustrativeexample, we showcase the MCTBI method for the computational prediction of the ion effects in RNA folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.