Abstract

Soil moisture is one of the main factors in the water, energy and carbon cycles. It constitutes a major uncertainty in climate and hydrological models. By now, passive microwave remote sensing and thermal infrared remote sensing technology have been used to obtain and monitor soil moisture. However, as the resolution of passive microwave remote sensing is very low and the thermal infrared remote sensing method fails to provide soil temperature on cloudy days, it is hard to monitor the soil moisture accurately. To solve the problem, a new method has been tried in this research. Thermal infrared remote sensing and passive microwave remote sensing technology have been combined based on the delicate experiment. Since the soil moisture retrieved by passive microwave in general represents surface centimeters deep, which is different from deeper soil moisture estimated by thermal inertia method, a relationship between the two depths soil moisture has been established based on the experiment. The results show that there is a good relationship between the soil moisture estimated by passive microwave and thermal infrared remote sensing method. The correlation coefficient is 0.78 and RMSE (root mean square error) is 0.0195􀜿􀝉􀬷 · 􀜿􀝉􀬿􀬷. This research provides a new possible method to inverse soil moisture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.