Abstract

Dissipative particle dynamics (DPD) is a potentially very effective approach in simulating mesoscale hydrodynamics. However, because of the soft potentials employed, the simple no-slip boundary conditions are difficult to impose. In this work, we first identify some of these difficulties and subsequently we propose a new method, based on an equivalent force between wall- and DPD-particles, to impose boundary conditions. We demonstrate the validity of this approach for steady problems (Poiseuille flow, lid-driven cavity) as well as for the unsteady oscillating flow over a flat plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.