Abstract
Digital mammograms are processed for detecting microcalcification clusters (MCCs) and prompting radiologists on their locations without specifying their type, i.e., benign, normal or malignant. The method includes image segmentation using SUSAN edge detector followed by the shape filters. Then the objects are classified with a four-level feed-forward Neural Network with four input features comprising perimeter and other three characterizing foreground-background relation. MCCs are found using the distance and the object count spatial filters. This simple yet robust system is capable to detect MC clusters with 98.4% of true positives at no false positive cases. The trial is performed on 118 mammograms from the DDSM database. It is shown in the paper that the reported performance is achieved due to the outstanding property of the edge detector to capture objects in a closed contour fashion; an efficient classifier, and significant features characterizing MCCs' geometry and intensities with respect to the background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.