Abstract

In a continuous bistable system, when the input signal is continuously increased, the output signal tends to be stable and no longer increases. At this time, the weak signal under strong background noise is difficult to be extracted, which means saturation occurs. Aiming at the saturation characteristics of stochastic resonance (SR), the proposed piecewise nonlinear bistable system (PNBSR) model has achieved certain results. However, the potential barrier in the middle of the PNBSR method still completely uses the potential function of classical bistable stochastic resonance (CBSR). There is no fundamental solution to the fourth-order limitation. This paper explores an improved piecewise mixed stochastic resonance (PMSR) potential model. The fourth-order potential function that restricts particle motion in CBSR is improved to a piecewise second-order potential function. This potential function subverts the shape of the traditional potential function and presents a symmetrical double-hook shape. Based on PMSR model, this paper uses particle swarm optimization (PSO) to select system parameters and elaborates the characteristics of the potential function curve in detail. Under the same conditions, the output signal-to-noise ratio (SNR) curve of the improved system is generally higher than that of the CBSR and PNBSR systems. Experiments on bearings and gears show that the proposed method can accurately extract weak fault features, and the effect is better than the PNBSR method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.