Abstract

Weak-target detection and imaging are the challenging problems of airborne or spaceborne early warning radar. The envelope of a high-speed weak target after range compression spreads over range during the long observation period. To finely refocus a high-speed weak maneuvering target, motion parameters should be accurately obtained for compensating the envelope. This letter proposes a new imaging approach for high-speed maneuvering targets without a priori knowledge of their motion parameters. In this method, the azimuth compression function is constructed in a range and azimuth 2-D frequency domain, which can eliminate the coupling effect between range and azimuth. Theoretical analysis confirms that the methodology can precisely focus targets. Simulation results show that the proposed algorithm improves the performance for detecting and imaging high-speed maneuvering targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.