Abstract

A new method for measuring turbulent heat fluxes using a combination of particle image velocimetry and a nanoscale fast-response cold-wire is tested by examining a rough-wall turbulent boundary layer subject to weakly stable stratification. The method has the advantages of simple calibration and setup, as well as providing spatial correlations of velocity and temperature and their associated integral length scales. The accuracy of using Taylor’s hypothesis when employing a large field of view is investigated. Heat flux, velocity–temperature correlation coefficients and turbulent Prandtl number profiles, as well as spatial velocity and temperature correlations, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.