Abstract

In this paper, a novel mesh-type rail pad with second-order stiffness (MTRPSOS) is proposed, which is comprised of a mesh-type rail pad (MTRP) and multiple filled blocks. By adjusting the height of the filled blocks, the stiffness curves of the MTRPSOS exhibit pronounced second-order stiffness (SOS) characteristics. A finite element (FE) model of the MTRPSOS and a dynamic model were established to investigate the SOS characteristics and their impact on various dynamic indices. The FE calculations reveal that both static and dynamic stiffness of the MTRPSOS increase as the height of the filled blocks decreases. Moreover, as the height of the filled blocks increases, stress distribution becomes more uniform. The dynamic calculations demonstrate that the SOS characteristics of the MTRPSOS significantly affect various dynamic indices. As the SOS of the MTRPSOS decreases, rail displacement correspondingly increases, while vibration acceleration, wheel-rail forces, fastener reaction forces, and derailment coefficient all decrease. This indicates that the MTRPSOS offers superior vibration reduction under the SOS conditions compared to the first-order stiffness conditions. Additionally, a comparative study was conducted to assess the vibration reduction effect of the MTRPSOS in contrast to traditional rail pad, and the results show that the MTRPSOS consistently exhibits lower vibration levels under the same operating conditions, underscoring its superior capacity for vibration reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.