Abstract

A new tool material for cold forging applications was developed using numerical simulation techniques (FEM) for the design and a powder metallurgical route (HIP) for the production. The basic idea was to find an optimized microstructure of the two phase material by simulating different distributions of hard particles within the metal matrix. On the micro-scale, loading was applied by a field of deformations which was obtained by a macroscopical simulation of a particular cold forming process in bolt making. A new double dispersion microstructure was found to show the best resistance against crack propagation. Specimens were produced by hot isostatic pressing. Afterwards the new material was tested in the laboratory. Wear resistance and bending strength of the double dispersive material are comparable to a standard dispersion material with the same volume fraction of particles, but fracture toughness is increased by about 30%. Testing the new material in bolt making showed that the life time of the tool is increased by a factor of 8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.