Abstract

We consider a deterministic model of the manufacturing system with product recovery. Two types of policies for the problem had been proposed in literature, namely the (1, R) policy, in which one manufacturing setup is followed by R remanufacturing setups and the ( P,1) policy, which has P manufacturing setups, following every remanufacturing setup. Teunter (2004) developed heuristics to evaluate the cost for both policies and recommended choosing the better one among them. In this paper, we develop a new class of general ( P, R) policies, where the long-run ratio of the number of manufacturing setups to the number of remanufacturing setups is P/ R. Rather than have P manufacturing setups followed by R remanufacturing setups, we interleave (or intersperse) the setups of the manufacturing lots and the remanufacturing lots in such a way that the buildup of the recoverable inventory is minimized. We develop interleaving based ( P, R) policy heuristics for the problem. Numerical results presented in the paper show that the proposed heuristic outperforms or performs as well as the best of the Teunter (2004) policies for all the problems tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.