Abstract

Over the last decade, near-infrared spectroscopy, together with the use of chemometrics models, has been widely employed as an analytical tool in several industries. However, most chemical processes or analytes are multivariate and nonlinear in nature. To solve this problem, local errors regression method is presented in order to build an accurate calibration model in this paper, where a calibration subset is selected by a new similarity criterion which takes the full information of spectra, chemical property, and predicted errors. After the selection of calibration subset, the partial least squares regression is applied to build calibration model. The performance of the proposed method is demonstrated through a near-infrared spectroscopy dataset of pharmaceutical tablets. Compared with other local strategies with different similarity criterions, it has been shown that the proposed local errors regression can result in a significant improvement in terms of both prediction ability and calculation speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.