Abstract

In this paper, a new lattice hydrodynamic model for bidirectional pedestrian flow is proposed by considering the pedestrian’s visual field effect. The stability condition of this model is obtained by the linear stability analysis. The mKdV equation near the critical point is derived to describe the density wave of pedestrian jam by applying the reductive perturbation method. The phase diagram indicates that the phase transition occurs among the freely moving phase, the coexisting phase, and the uniformly congested phase below the critical point \(a_c\). Furthermore, the analytical results show that the visual field effect plays an important role in jamming transition. To take into account the visual information about the motion of more pedestrian in front can improve efficiently the stability of pedestrian system. In addition, the numerical simulations are in accordance with the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.