Abstract

During the flyover of large-scale terrain, in order to eliminate the popping effect of switching among levels of detail and to increase the frame rates with high image quality, a new bottom-up modeling strategy is put forward, which constructs simplified terrain triangle mesh globally and updates mesh nodes dynamically. Hybrid culling technique based on blocks and triangle faces and simplified computing method for screen-space errors are employed to select appropriate terrain nodes rapidly. Then the Delaunay terrain mesh is updated by adding nodes, deleting nodes and modifying locally. At the same time self-adaptive control for screen-space error tolerance is achieved during the terrain flyover. Results of simulation experiments demonstrate that the algorithm eliminates popping effect effectively, and has a higher frame rate compared with other algorithms. So it is particularly suitable for close-distance flyover simulation of large-scale terrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.